
Libre Software Meeting 2012

Linux kernel:
consolidation in the
ARM architecture
support

Thomas Petazzoni
Free Electrons
thomas.petazzoni@free-electrons.com

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 1/51

Thomas Petazzoni

I Embedded Linux engineer and trainer at Free Electrons
since 2008

I Embedded Linux development: kernel and driver
development, system integration, boot time and power
consumption optimization, consulting, etc.

I Embedded Linux training, Linux driver development training
and Android system development training, with materials
freely available under a Creative Commons license.

I http://www.free-electrons.com

I Major contributor to Buildroot, an open-source, simple and
fast embedded Linux build system

I Working on mainlining support for the Marvell Armada
370 and Armada XP ARM SoCs

I Speaker at Embedded Linux Conference, Embedded Linux
Conference Europe, FOSDEM, Libre Software Meeting, etc.

I Living in Toulouse, south west of France

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 2/51

http://www.free-electrons.com

Agenda

I The initial complaint

I The ARM “problem(s)”
I The solutions

I Maintainer
I Device Tree
I Clock framework
I Pinctrl subsystem

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 3/51

Someone complains...

Gaah. Guys, this whole ARM
thing is a f*cking pain in the

ass.

Linus Torvalds – 17 March 2011

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 4/51

Someone complains...

Gaah. Guys, this whole ARM
thing is a f*cking pain in the

ass.

Linus Torvalds – 17 March 2011

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 4/51

...and suggests to do something

Somebody in the ARM
community really needs to step

up and tell people to stop
dicking around.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 5/51

ARM Holdings

ARM Holdings is a British company that designs processor cores.

I They define instruction sets, and design cores implementing
those instruction sets, memory management units, caches, etc.

I Examples of cores: ARM926EJ-S, Cortex-A8, Cortex-A9,
Cortex-M3, etc.

I ARM does not produce processors that people can buy

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 6/51

Silicon vendors

A number of silicon-vendors buy those designs, and create
System-on-chip combining a ARM core and a number of
peripherals

I Peripherals are typically UARTs, bus controllers (USB, SPI,
I2C, PCI, etc.), Ethernet controllers, ADCs, CAN controllers,
video/audio encoding/decoding, graphics (2D, 3D), etc.

I Silicon vendors combine different sets of peripherals to address
different markets (industrial, automotive, consumer, etc.)

I Examples: Texas Instruments OMAP4 (dual Cortex-A9),
Atmel AT91SAM9M10 (926EJ-S), Freescale i.MX 6 (from 1
to 4 Cortex-A9), etc.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 7/51

High level overview of an ARM board

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 8/51

Wide variety of ARM platforms

and this is only a very, very partial list. ARM has more than 150
licensees.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 9/51

Maintenance problem

I This huge variety of SoCs, each getting more and more
complicated, leads to a large quantity of code to support
them

I The historical ARM maintainer, Russell King, through which
all ARM code was initially going, got overflowed by the
amount of code

I Code from sub-architectures (SoC families) started to go
directly to Linus

I Focus of sub-architecture maintainers on their
sub-architecture, no vision of the other sub-architectures

I Consequence: a lot of code duplication, no common
infrastructures designed for common problems, similar
problems solved differently, etc.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 10/51

Single kernel image

I Until now, ARM platforms mainly used in the industrial
embedded space, or un-modifiable consumer products

I A given binary kernel image was configured and built
specifically for each platform

I All the existing code makes the assumption that the kernel is
built for one single platform

I ARM now used in modifiable consumer products (tablets,
phones, etc.)

I Desire for distributions to provide a system for such platforms
I On x86, easy because one kernel image supports all platforms.

On ARM, each platform currently needs one specific kernel
image.

I In the future, wish to support multiple platforms inside a
single kernel image.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 11/51

Solutions

I Sub-architecture maintainer

I Device Tree

I Clock framework

I Pinctrl subsystem

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 12/51

Sub-architecture maintainer

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 13/51

ARM sub-architecture maintainer

I The lack of a cross sub-architecture vision was filled by
creating a team of ARM sub-architecture maintainers, in
May 2011

I Initially with Arnd Bergmann (Linaro/IBM), Nicolas Pitre
(Linaro), Marc Zyngier (ARM), later joined by Olof Johansson
(Tegra maintainer)

I This team takes care of reviewing and consolidating the
code of the different sub-architectures, and sending it to
Linus Torvalds

I Russell King continues to be the maintainer for the ARM core
part (memory management, CPU support code, etc.)

I Important role of Linaro in this new maintainer team
I Linaro is a not-for-profit engineering organization consolidating

and optimizing open source Linux software and tools for the
ARM architecture.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 14/51

Flow of code

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 15/51

Device tree

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 16/51

Definition of platform details

I All the board-specific details and SoC-specific details require
specific C code to support new platforms

I A lot of very similar C code to support each and every board,
to list all the peripherals, their configuration, etc.

I Code organized in a hierarchy

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 17/51

List of files in arch/arm/mach-at91

at91rm9200.c at91x40_time.c board-neocore926.c clock.h

at91rm9200_devices.c board-1arm.c board-pcontrol-g20.c cpuidle.c

at91rm9200_time.c board-afeb-9260v1.c board-picotux200.c generic.h

at91sam9260.c board-cam60.c board-qil-a9260.c gpio.c

at91sam9260_devices.c board-carmeva.c board-rm9200dk.c include

at91sam9261.c board-cpu9krea.c board-rm9200ek.c irq.c

at91sam9261_devices.c board-cpuat91.c board-rsi-ews.c Kconfig

at91sam9263.c board-csb337.c board-sam9260ek.c leds.c

at91sam9263_devices.c board-csb637.c board-sam9261ek.c Makefile

at91sam926x_time.c board-dt.c board-sam9263ek.c Makefile.boot

at91sam9_alt_reset.S board-eb01.c board-sam9g20ek.c pm.c

at91sam9g45.c board-eb9200.c board-sam9-l9260.c pm.h

at91sam9g45_devices.c board-ecbat91.c board-sam9m10g45ek.c pm_slowclock.S

at91sam9g45_reset.S board-eco920.c board-sam9rlek.c sam9_smc.c

at91sam9n12.c board-flexibity.c board-snapper9260.c sam9_smc.h

at91sam9rl.c board-foxg20.c board-stamp9g20.c setup.c

at91sam9rl_devices.c board-gsia18s.c board-usb-a926x.c soc.h

at91sam9x5.c board-kafa.c board-yl-9200.c

at91x40.c board-kb9202.c clock.c

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 18/51

Old probing mechanism: overview

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 19/51

The board file

static struct macb_platform_data snapper9260_macb_data = {

.phy_irq_pin = -EINVAL,

.is_rmii = 1,

};

static struct i2c_board_info __initdata snapper9260_i2c_devices[] = {

{ I2C_BOARD_INFO("max7312", 0x28),

.platform_data = &snapper9260_io_expander_data, },

{ I2C_BOARD_INFO("tlv320aic23", 0x1a), },

};

static void __init snapper9260_board_init(void)

{

at91_add_device_i2c(snapper9260_i2c_devices,

ARRAY_SIZE(snapper9260_i2c_devices));

at91_register_uart(0, 0, 0);

at91_register_uart(AT91SAM9260_ID_US0, 1,

ATMEL_UART_CTS | ATMEL_UART_RTS);

at91_add_device_eth(&snapper9260_macb_data);

[...]

}

MACHINE_START(SNAPPER_9260, "Bluewater Systems Snapper 9260/9G20 module")

[...]

.init_machine = snapper9260_board_init,

MACHINE_END

The board file registers devices (from
arch/arm/mach-at91/board-snapper9260.c)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 20/51

The SoC file: device definition

static struct macb_platform_data eth_data;

static struct resource eth_resources[] = {

[0] = {

.start = AT91SAM9260_BASE_EMAC,

.end = AT91SAM9260_BASE_EMAC + SZ_16K - 1,

.flags = IORESOURCE_MEM,

},

[1] = {

.start = AT91SAM9260_ID_EMAC,

.end = AT91SAM9260_ID_EMAC,

.flags = IORESOURCE_IRQ,

},

};

static struct platform_device at91sam9260_eth_device = {

.name = "macb",

.id = -1,

.dev = {

.dma_mask = ð_dmamask,

.coherent_dma_mask = DMA_BIT_MASK(32),

.platform_data = ð_data,

},

.resource = eth_resources,

.num_resources = ARRAY_SIZE(eth_resources),

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 21/51

The SoC file: device registration

void __init at91_add_device_eth(struct macb_platform_data *data)

{

[...]

if (gpio_is_valid(data->phy_irq_pin)) {

at91_set_gpio_input(data->phy_irq_pin, 0);

at91_set_deglitch(data->phy_irq_pin, 1);

}

/* Pins used for MII and RMII */

at91_set_A_periph(AT91_PIN_PA19, 0); /* ETXCK_EREFCK */

at91_set_A_periph(AT91_PIN_PA17, 0); /* ERXDV */

at91_set_A_periph(AT91_PIN_PA14, 0); /* ERX0 */

at91_set_A_periph(AT91_PIN_PA15, 0); /* ERX1 */

at91_set_A_periph(AT91_PIN_PA18, 0); /* ERXER */

at91_set_A_periph(AT91_PIN_PA16, 0); /* ETXEN */

at91_set_A_periph(AT91_PIN_PA12, 0); /* ETX0 */

at91_set_A_periph(AT91_PIN_PA13, 0); /* ETX1 */

at91_set_A_periph(AT91_PIN_PA21, 0); /* EMDIO */

at91_set_A_periph(AT91_PIN_PA20, 0); /* EMDC */

if (!data->is_rmii) {

[...]

}

eth_data = *data;

platform_device_register(&at91sam9260_eth_device);

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 22/51

The driver part

static int __init macb_probe(struct platform_device *pdev)

{

[...]

}

static int __exit macb_remove(struct platform_device *pdev)

{

[...]

}

static struct platform_driver macb_driver = {

.remove = __exit_p(macb_remove),

.driver = {

.name = "macb",

.owner = THIS_MODULE,

},

};

static int __init macb_init(void)

{

return platform_driver_probe(&macb_driver, macb_probe);

}

static void __exit macb_exit(void)

{

platform_driver_unregister(&macb_driver);

}

module_init(macb_init);

module_exit(macb_exit);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 23/51

Device Tree: principle

I The general idea of the Device Tree is to separate a large
part of the hardware description from the kernel sources

I The Device Tree is a tree of nodes, describing the different
hardware components of a system and their characteristics

I Written in a specialized language, the Device Tree Source is
compiled into a Device Tree Blob by the Device Tree Compiler

I This mechanism takes its roots from OpenFirmware used on
some PowerPC platforms, and has been used on all PowerPC
platforms for a long time.

I It is now also being used in other architectures in the Linux
kernel such as Microblaze, OpenRISC and C6X.

I Inheritance mechanism: .dts files for boards, .dtsi for
include files

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 24/51

Device Tree: tegra20.dtsi

/include/ "skeleton.dtsi"

/ {

compatible = "nvidia,tegra20";

interrupt-parent = <&intc>;

intc: interrupt-controller {

compatible = "arm,cortex-a9-gic";

reg = <0x50041000 0x1000

0x50040100 0x0100>;

interrupt-controller;

#interrupt-cells = <3>;

};

serial@70006000 {

compatible = "nvidia,tegra20-uart";

reg = <0x70006000 0x40>;

reg-shift = <2>;

interrupts = <0 36 0x04>;

status = "disable";

};

serial@70006040 {

compatible = "nvidia,tegra20-uart";

reg = <0x70006040 0x40>;

reg-shift = <2>;

interrupts = <0 37 0x04>;

status = "disable";

};

i2c@7000c000 {

compatible = "nvidia,tegra20-i2c";

reg = <0x7000c000 0x100>;

interrupts = <0 38 0x04>;

#address-cells = <1>;

#size-cells = <0>;

status = "disable";

};

i2c@7000c400 {

compatible = "nvidia,tegra20-i2c";

reg = <0x7000c400 0x100>;

interrupts = <0 84 0x04>;

#address-cells = <1>;

#size-cells = <0>;

status = "disable";

};

usb@c5004000 {

compatible = "nvidia,tegra20-ehci","usb-ehci";

reg = <0xc5004000 0x4000>;

interrupts = <0 21 0x04>;

phy_type = "ulpi";

status = "disable";

};

[...]

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 25/51

Device Tree: tegra-harmony.dts

/dts-v1/;

/include/ "tegra20.dtsi"

/ {

model = "NVIDIA Tegra2 Harmony evaluation board";

compatible = "nvidia,harmony", "nvidia,tegra20";

memory {

reg = <0x00000000 0x40000000>;

};

serial@70006300 {

status = "okay";

clock-frequency = <216000000>;

};

i2c@7000c400 {

status = "okay";

clock-frequency = <400000>;

};

i2c@7000c000 {

status = "okay";

clock-frequency = <400000>;

wm8903: wm8903@1a {

compatible = "wlf,wm8903";

reg = <0x1a>;

interrupt-parent = <&gpio>;

interrupts = <187 0x04>;

gpio-controller;

#gpio-cells = <2>;

[...]

};

};

usb@c5004000 {

status = "okay";

nvidia,phy-reset-gpio = <&gpio 169 0>;

};

[...]

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 26/51

Device Tree usage

I When the .dts file is in arch/arm/boot/dts, as simple as:
make ARCH=arm foobar.dtb

I Then, on ARM, two cases:

1. Your bootloader has DT support.
You need to load both your kernel image and DT image, and
start the kernel with both addresses. The DTB address is
passed to the kernel in register r2, instead of the ATAG
address. With U-Boot:
bootm kerneladdr - dtbaddr

2. Your bootloader does not have DT support.
ARM has a special CONFIG_ARM_APPENDED_DTB option that
allows to append the zImage directly with the dtb. This is
provided for debugging only, bootloaders are expected to
provide DT support.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 27/51

Device Tree in the ARM code

I Only one “board” file is needed per SoC

I Uses DT_MACHINE_START instead of MACHINE_START

I Provides a dt_compat table to list the platforms compatible
with this definition

I of_platform_populate will instantiate the devices
I From arch/arm/mach-tegra/board-dt-tegra20.c:

static void __init tegra_dt_init(void)

{

[...]

of_platform_populate(NULL, tegra_dt_match_table,

tegra20_auxdata_lookup, NULL);

}

static const char *tegra20_dt_board_compat[] = {

"nvidia,tegra20",

NULL

};

DT_MACHINE_START(TEGRA_DT, "nVidia Tegra20 (Flattened Device Tree)")

.init_machine = tegra_dt_init,

.dt_compat = tegra20_dt_board_compat,

[...]

MACHINE_END

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 28/51

Device tree in drivers: i2c-tegra.c

static const struct of_device_id tegra_i2c_of_match[] __devinitconst = {

{ .compatible = "nvidia,tegra20-i2c", },

{ .compatible = "nvidia,tegra20-i2c-dvc", },

{},

};

MODULE_DEVICE_TABLE(of, tegra_i2c_of_match);

static struct platform_driver tegra_i2c_driver = {

.probe = tegra_i2c_probe,

.remove = __devexit_p(tegra_i2c_remove),

.driver = {

.name = "tegra-i2c",

.owner = THIS_MODULE,

.of_match_table = tegra_i2c_of_match,

},

};

static int __init tegra_i2c_init_driver(void)

{

return platform_driver_register(&tegra_i2c_driver);

}

static void __exit tegra_i2c_exit_driver(void)

{

platform_driver_unregister(&tegra_i2c_driver);

}

subsys_initcall(tegra_i2c_init_driver);

module_exit(tegra_i2c_exit_driver);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 29/51

Device Tree binding

I With the Device Tree, each driver defines:
I its compatible string, which uniquely identifies the driver, and

allows devices to be bound to the corresponding driver
I the properties of each device in the device tree

I This definition is called a device tree binding

I All device tree bindings are normally documented in
Documentation/devicetree/bindings.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 30/51

Device Tree: summary

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 31/51

Clocks in SoCs

I The different hardware parts of an SoC are driven by different
clocks, operating at different frequencies

I Most of those clocks are part of a complex clock tree, where
parents clocks are inputs to children clocks

I Many of those clocks are software configurable (on/off,
multiple frequencies, etc.) and must be manipulated at
runtime for power management reasons

I Due to the parent/child relationship, one must ensure that

1. The parent clock is enabled when a child clock needs to be
enabled

2. The parent clock is disabled once all children have been
disabled

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 32/51

The old clock management infrastructure

I Clocks need to be manipulated by device drivers: they know
when to enable/disable the needed clocks

I Clocks are listed and controlled by SoC code
I Since some time, a common clock API has been defined in

<linux/clk.h>, defining

1. An opaque struct clk structure, that drivers could
manipulate

2. A simple clk_get, clk_put, clk_enable, clk_disable,
clk_get_rate API

I Each ARM sub-architecture had to have its own definition of
struct clk and its own implementation of the API

I A lot of code duplication
I No common facilities, even though most clocks are relatively

similar between SoC

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 33/51

The new clock framework

I A proper clock framework has been added in kernel 3.4,
released in May 2012

I Initially from Jeremy Kerr (Canonical), finally implemented
and merged by Mike Turquette (Texas Instruments)

I This framework:
I Implements the clk_get, clk_put, clk_prepare,

clk_unprepare, clk_enable, clk_disable, clk_get_rate,
etc. API for usage by device drivers

I Provides data structures (struct clk_hw and
struct clkops) for SoC code to define its clocks, and a
clk_register, clk_unregister API to register them, and
clk_register_clkdevs to associate clocks to device names

I Implements some basic clock types (fixed rate, gatable,
divider, fixed factor, etc.)

I Provides a debugfs representation of the clock tree
I Is implemented in drivers/clk

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 34/51

Clock framework, the driver side

From drivers/serial/tty/mxs-auart.c, the UART driver for
i.MX23/28 SoCs.
static int mxs_auart_startup(struct uart_port *u)

{

[...]

clk_prepare_enable(s->clk);

[...]

}

static void mxs_auart_shutdown(struct uart_port *u)

{

[...]

clk_disable_unprepare(s->clk);

}

static int __devinit mxs_auart_probe(struct platform_device *pdev)

{

[...]

s->clk = clk_get(&pdev->dev, NULL);

[...]

s->port.uartclk = clk_get_rate(s->clk);

[...]

}

static int __devexit mxs_auart_remove(struct platform_device *pdev)

{

[...]

clk_put(s->clk);

[...]

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 35/51

Clock framework, SoC side

From drivers/clk/mxs/clk-imx28.c

static struct clk_lookup uart_lookups[] __initdata = {

{ .dev_id = "duart", },

{ .dev_id = "mxs-auart.0", },

[...]

{ .dev_id = "8006a000.serial", },

[...]

};

static struct clk *clks[clk_max];

int __init mx28_clocks_init(void)

{

[...]

clks[ref_xtal] = mxs_clk_fixed("ref_xtal", 24000000);

clks[pll0] = mxs_clk_pll("pll0", "ref_xtal", PLL0CTRL0, 17, 480000000);

[...]

clks[ref_cpu] = mxs_clk_ref("ref_cpu", "pll0", FRAC0, 0);

clks[ref_emi] = mxs_clk_ref("ref_emi", "pll0", FRAC0, 1);

[...]

clks[gpmi_sel] = mxs_clk_mux("gpmi_sel", CLKSEQ, 2, 1, sel_gpmi, ARRAY_SIZE(sel_gpmi));

clks[ssp0_sel] = mxs_clk_mux("ssp0_sel", CLKSEQ, 3, 1, sel_io0, ARRAY_SIZE(sel_io0));

clks[ssp1_sel] = mxs_clk_mux("ssp1_sel", CLKSEQ, 4, 1, sel_io0, ARRAY_SIZE(sel_io0));

clks[ssp2_sel] = mxs_clk_mux("ssp2_sel", CLKSEQ, 5, 1, sel_io1, ARRAY_SIZE(sel_io1));

[...]

clks[uart] = mxs_clk_gate("uart", "ref_xtal", XTAL, 31);

[...]

clk_register_clkdevs(clks[uart], uart_lookups, ARRAY_SIZE(uart_lookups));

[...]

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 36/51

Clock framework, SoC side

I mxs_clk_fixed()

Registers a fixed-rate clock, using the clk-fixed clock type
provided by the base clock framework in
drivers/clk/clk-fixed.c

I mxs_clk_ref()

Registers a reference clock, using the clk-ref clock type
specific to i.MX, implemented in
drivers/clk/mxs/clk-ref.c

I mxs_clk_pll()

Registers a PLL clock, using the clk-pll clock type specific
to i.MX, implemented in drivers/clk/mxs/clk-pll.c

I mxs_clk_mux()

Registers a muxed clock, using the clk-mux clock type
provided by the base clock framework in
drivers/clk/clk-mux.c

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 37/51

Clock tree in debugfs

cd /sys/kernel/debug/clk

find

./ref_xtal

./ref_xtal/pll0

./ref_xtal/pll0/ref_io1

./ref_xtal/pll0/ref_io1/ssp2_sel

./ref_xtal/pll0/ref_io1/ssp2_sel/ssp2_div

./ref_xtal/pll0/ref_io1/ssp2_sel/ssp2_div/ssp2

./ref_xtal/pll0/ref_io1/ssp2_sel/ssp2_div/ssp2/clk_notifier_count

./ref_xtal/pll0/ref_io1/ssp2_sel/ssp2_div/ssp2/clk_enable_count

./ref_xtal/pll0/ref_io1/ssp2_sel/ssp2_div/ssp2/clk_prepare_count

./ref_xtal/pll0/ref_io1/ssp2_sel/ssp2_div/ssp2/clk_flags

./ref_xtal/pll0/ref_io1/ssp2_sel/ssp2_div/ssp2/clk_rate

./ref_xtal/pll0/ref_io1/ssp2_sel/ssp2_div/clk_notifier_count

./ref_xtal/pll0/ref_io1/ssp2_sel/ssp2_div/clk_enable_count

./ref_xtal/pll0/ref_io1/ssp2_sel/ssp2_div/clk_prepare_count

./ref_xtal/pll0/ref_io1/ssp2_sel/ssp2_div/clk_flags

./ref_xtal/pll0/ref_io1/ssp2_sel/ssp2_div/clk_rate

[...]

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 38/51

Clock framework: summary

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 39/51

Introduction to pin muxing

I SoCs integrate many more peripherals than the number of
available pins allows to expose.

I Many of those pins are therefore multiplexed: they can either
be used as function A, or function B, or function C, or a GPIO

I Example of functions are:
I parallel LCD lines
I SDA/SCL lines for I2C busses
I MISO/MOSI/CLK lines for SPI
I RX/TX/CTS/DTS lines for UARTs

I This muxing is software-configurable, and depends on how
the SoC is used on each particular board

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 40/51

Pin muxing: principle

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 41/51

Pin muxing: example

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 42/51

The old pin-muxing code

I Each ARM sub-architecture had its own pin-muxing code

I The API was specific to each sub-architecture

I Lot of similar functionality implemented in different ways

I The pin-muxing had to be done at the SoC level, and couldn’t
be requested by device drivers

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 43/51

The new pin-muxing subsystem

I The new pinctrl subsystem aims at solving those problems

I Mainly developed and maintained by Linus Walleij, from
Linaro/ST-Ericsson

I Implemented in drivers/pinctrl

I Provides:
I An API to register pinctrl driver, i.e entities knowing the list of

pins, their functions, and how to configure them. Used by
SoC-specific drivers to expose pin-muxing capabilities.

I An API for device drivers to request the muxing of a certain
set of pins

I An interaction with the GPIO framework

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 44/51

The new pin-muxing subsystem: diagram

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 45/51

Declaring pin groups in the SoC dtsi

I From arch/arm/boot/dts/imx28.dtsi
I Declares the pinctrl device and various pin groups

pinctrl@80018000 {

#address-cells = <1>;

#size-cells = <0>;

compatible = "fsl,imx28-pinctrl", "simple-bus";

reg = <0x80018000 2000>;

duart_pins_a: duart@0 {

reg = <0>;

fsl,pinmux-ids = <0x3102 0x3112>;

fsl,drive-strength = <0>;

fsl,voltage = <1>;

fsl,pull-up = <0>;

};

duart_pins_b: duart@1 {

reg = <1>;

fsl,pinmux-ids = <0x3022 0x3032>;

fsl,drive-strength = <0>;

fsl,voltage = <1>;

fsl,pull-up = <0>;

};

mmc0_8bit_pins_a: mmc0-8bit@0 {

reg = <0>;

fsl,pinmux-ids = <0x2000 0x2010 0x2020

0x2030 0x2040 0x2050 0x2060

0x2070 0x2080 0x2090 0x20a0>;

fsl,drive-strength = <1>;

fsl,voltage = <1>;

fsl,pull-up = <1>;

};

mmc0_4bit_pins_a: mmc0-4bit@0 {

reg = <0>;

fsl,pinmux-ids = <0x2000 0x2010 0x2020

0x2030 0x2080 0x2090 0x20a0>;

fsl,drive-strength = <1>;

fsl,voltage = <1>;

fsl,pull-up = <1>;

};

mmc0_cd_cfg: mmc0-cd-cfg {

fsl,pinmux-ids = <0x2090>;

fsl,pull-up = <0>;

};

mmc0_sck_cfg: mmc0-sck-cfg {

fsl,pinmux-ids = <0x20a0>;

fsl,drive-strength = <2>;

fsl,pull-up = <0>;

};

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 46/51

Associating devices with pin groups, board dts

I From arch/arm/boot/dts/cfa10036.dts

apb@80000000 {

apbh@80000000 {

ssp0: ssp@80010000 {

compatible = "fsl,imx28-mmc";

pinctrl-names = "default";

pinctrl-0 = <&mmc0_4bit_pins_a

&mmc0_cd_cfg &mmc0_sck_cfg>;

bus-width = <4>;

status = "okay";

};

};

apbx@80040000 {

duart: serial@80074000 {

pinctrl-names = "default";

pinctrl-0 = <&duart_pins_b>;

status = "okay";

};

};

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 47/51

Device drivers requesting pin muxing

I From drivers/mmc/host/mxs-mmc.c

static int mxs_mmc_probe(struct platform_device *pdev)

{

[...]

pinctrl = devm_pinctrl_get_select_default(&pdev->dev);

if (IS_ERR(pinctrl)) {

ret = PTR_ERR(pinctrl);

goto out_mmc_free;

}

[...]

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 48/51

References

I About ARM maintenance
I ARM Subarchitecture Status, Arnd Bergmann, ELC 2012

I About the Device Tree
I Official Wiki, http://devicetree.org
I Experiences With Device Tree Support Development For ARM-Based

SOC’s, Thomas P. Abraham, ELC 2012
I Device Tree Status Report, Grant Likely, ELCE 2011.

I About the clock framework
I Documentation/clk.txt in the kernel sources
I http://lwn.net/Articles/472998/
I Common Clock Framework, Mike Turquette, ELC2012

I About the pinctrl subsystem
I Documentation/pinctrl.txt in the kernel sources
I http://lwn.net/Articles/468759/
I Pin Control Subsystem Overview, Linus Walleij, ELC2012

I Slides and video at
I http://free-electrons.com/blog/elc-2012-videos/ for Embedded

Linux Conference 2012
I http://free-electrons.com/blog/elce-2011-videos/ for Embedded

Linux Conference Europe 2011

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 49/51

http://devicetree.org
http://lwn.net/Articles/472998/
http://lwn.net/Articles/468759/
http://free-electrons.com/blog/elc-2012-videos/
http://free-electrons.com/blog/elce-2011-videos/

Conclusion

I The pinctrl and clk subsystems now provide generic
abstractions to manage pin muxing and the clocks of an SoC

I The device tree provides a better way of representing the
hardware, requiring less code to describe new platforms

I The usage of these new infrastructures is mandatory for new
platforms

I Conversion of existing platforms that are widely used is in
process

I The ARM community has gained better code infrastructures,
a better organization, and has become even more dynamic
than it was.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 50/51

Questions?

Thomas Petazzoni
thomas.petazzoni@free-electrons.com

Slides under CC-BY-SA 3.0.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 51/51

