Buildroot Workshop

Bu 0T

Thomas Petazzoni Making Linux Easy
Free Electrons .
thomas.petazzoni@free-electrons.com




» Embedded Linux engineer and trainer at Free Electrons since
2008

» Embedded Linux development: kernel and driver development,
system integration, boot time and power consumption
optimization, consulting, etc.

» Embedded Linux training, Linux driver development training
and Android system development training, with materials
freely available under a Creative Commons license.

» http://www.free-electrons.com

» Major contributor to Buildroot, an open-source, simple and
fast embedded Linux build system

» Speaker at Embedded Linux Conference, Embedded Linux
Conference Europe, FOSDEM, Libre Software Meeting, etc.

» Living in Toulouse, south west of France


http://www.free-electrons.com

> Install necessary tools and packages

> Get Buildroot

> Build a minimal system, and boot it on the target
» Customize the system

» Create new packages, one library, one application

> Generate an UBIFS image, and flash the system in the NAND
Flash



You will find the slides and other files needed for this workshop at:

http://free-electrons.com/~thomas/lsm-tutorial/


http://free-electrons.com/~thomas/lsm-tutorial/

» IGEPv2 from ISEE

» DM3730 (ARM
OMAP3) at 1 GHz

» 512 MB of RAM, 512
MB of Flash

» microSD, HDMI,

audio, Ethernet,
Bluetooth, Wifi

http://igep.es/products/processor-boards/igepv2-board


http://igep.es/products/processor-boards/igepv2-board

i

We'll need:

> A terminal emulator program to interact with the target
over the serial port

» A TFTP server to transfer the kernel image to the target

» A NFS server to mount the root filesystem over the network

Of course, adapt those instructions if you're not using a
Debian-derived distribution.



Even though Buildroot builds most of the tools it needs, it still
requires a few dependencies on the build system:




» Tarballs are available for major versions, but since one
generally needs to make changes to Buildroot, using Git is
recommended

» Clone the repository

» Create a branch starting from a stable release

» Switch to this branch




Run make menuconfig
Target architecture: ARM Little Endian
Target architecture variant: Cortex-A8

» Toolchain
» Toolchain type: External toolchain
» Toolchain: CodeSourcery 2011.09
System configuration
» /dev management: Dynamic using devtmpfs only
» Port to run a getty on: ttyO2
Package selection for the target
» Only Busybox is selected. This is fine for now.
Kernel
» Kernel version: Custom version
» Kernel version: 3.2
» Custom kernel patches:
board/1lsm/demo/linux-3.2-patches/
» Defconfig name: omap2plus

v

v

v

v

v



For this board to work with kernel 3.2, we need two patches to
enable NAND support.




Let’s run the build, and keep a log from it:



In the output directory, we have:

» build, with one subdirectory per package that has been built.
The source code of the packages is extracted here, and they
are compiled here.

» host, where host tools are installed. The external toolchain
has been extracted in host/opt, in host/usr/bin, you have
a few host tools, and in
host/usr/arm-unknown-1linux-gnueabi/sysroot you
have the sysroot

> staging, symbolic link to the sysroot

> target, where the target libraries and applications are
installed.

» toolchain, empty because we're using an external toolchain

> images, which contains the root filesystem as a tarball, and
the kernel image. Look at the root filesystem size (it is
uncompressed!)



Generated with:
./support/scripts/graph-depends > deps.dot
dot -Tpdf -o deps.pdf deps.dot



1. Extract the root filesystem:

2. Export it over NFS, add the following line to /etc/exports:

3. And restart the NFS server:

4. Copy the kernel image to the TFTP exported directory:

5. Configure your system to assign the 192.168.42.1 static IP
address to the USB-ethernet interface (using Network
Manager or ifconfig)






1. Start a serial emulator program:

2. When the board boots, interrupt in U-Boot during
Hit any key to stop autoboot: by pressing a key, and
enter the following commands:

3. The system should boot automatically.



> Login as root, no password will be prompted.
> Explore the system. You'll see that it is fairly minimal. We
have:
» Busybox installed (in /bin, /sbin, /usr/bin, /usr/sbin)
» The C librari in /1ib
» A bunch of configuration files and init scripts in /etc/
» /proc and /sys mounted
> In the running processes, we only have the usual kernel
threads, the init process, a shell, and the syslogd/klogd
daemons for login

» For Buildroot, it is important that the default is small



Let's learn now how to customize the kernel configuration from
Buildroot.

1. Run make linux-menuconfig

2. In Device Drivers — LED Support, enable as static
options (with a *, not a ):
» LED Class support
» LED Support for GPIO connected LEDs
» LED Trigger support
» LED Timer trigger
» LED heartbeat trigger

3. Rebuild by running make
4. Copy your kernel image to the TFTP directory:




Reboot your system, and try the following commands:




i

Our kernel configuration change has only been made to
output/build/linux-3.2/.confiog, which will be removed if
we do a make clean, so let's save our kernel configuration
changes.

1. Generate a minimal defconfig for our kernel configuration:

2. Store in our project-specific directory

3. Adjust the Buildroot configuration:

» Linux Kernel — Kernel configuration —
Using a custom configuration file

» Configuration file path:
board/lsm/demo/linux-3.2.confi



Let's enable a new package, the lightweight SSH client/server
Dropbear.



1. Create board/lsm/demo/post-build.sh with:

2. Add executable permissions to the script

. In make menuconfig, System configuration — Custom
script to run before creating filesystem images
set board/lsm/demo/post-build. sh.



1. Run make to rebuild your system

2. Re-extract the root filesystem tarball

3. Boot your system, you should see Dropbear being started

4. From your machine, log into your board through SSH:



We'll now see how to add new packages, by taking the example of
two dummy packages:
» libfoo, a dummy library that implements just a
int foo_add(int a, int b); function.
Available at http://free-electrons.com/~thomas/lsm-
tutorial/libfoo-0.1.tar.gz
» foo, a dummy application that uses libfoo
Available at http://free-electrons.com/~thomas/lsm-
tutorial/foo-0.1.tar.gz


http://free-electrons.com/~thomas/lsm-tutorial/libfoo-0.1.tar.gz
http://free-electrons.com/~thomas/lsm-tutorial/libfoo-0.1.tar.gz
http://free-electrons.com/~thomas/lsm-tutorial/foo-0.1.tar.gz
http://free-electrons.com/~thomas/lsm-tutorial/foo-0.1.tar.gz

Create the package/libfoo directory, and edit
package/libfoo/Config.in:

Then, edit package/Config.in, and under Libraries — Other,

add:
Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.con 25/43



Download the package tarball, and quickly study its build system.
It uses the traditional . /configure; make; make install
mechanism, using the autotools. We'll use the AUTOTARGETS
infrastructure for our package.

LIBFOO_SOURCE could be defined to
libfoo-$(LIBFOO_VERSION) .tar.gz, but since this is the
default, there's no need to mention it.



1. Enable your package in make menuconfig
2. Run make

3. Your library is correctly present in
output/target/usr/lib/libfoo.s0.0.1

4. But the header files, and other developments files, are not
present in output/staging/usr/include/libfoo



For libraries, we need to explicitely tell Buildroot to install them to
the staging directory.




1. make libfoo-dirclean

2. make

3. Check in output/staging/usr/include/libfoo that the
header file is installed.

4. You should also have the static version of the library in
output/staging/usr/1lib/ and the pkgconfig file foo.pc in
output/staging/usr/lib/pkgconfig



Our wonderful libfoo library supports one ./configure option:
--enable-debug. Let's add a new Buildroot option for it. In
package/libfoo/Config.in, add:




In the package/libfoo/libfoo.mk:

> In menuconfig, enable your new option

» Run make libfoo-dirclean to clean the package and force
its rebuild

» Run make



Now, let's create a package for the application. First the
package/foo/Config.in file:

And source it from the Miscellaneous section of package/Config.in:




Before writing the foo.mk, let’s download http://free-
electrons.com/~thomas/lsm-tutorial/foo-0.1.tar.gz and
look at its build system:

> |t is based on a manual Makefile, so we will have to use the
GENTARGETS infrastructure and not the AUTOTARGETS one

> It uses pkg-config to find the library foo. So we will have to
depend on libfoo and host-pkg-config

» For the build, we will have to pass CC, CFLAGS, LDFLAGS, etc.
with appropriate values. To do this, we'll use the Buildroot
variable TARGET _CONFIGURE_OPTS

> For the installation, we'll have to pass value for the DESTDIR
and prefix variables


http://free-electrons.com/~thomas/lsm-tutorial/foo-0.1.tar.gz
http://free-electrons.com/~thomas/lsm-tutorial/foo-0.1.tar.gz




v

Enable the foo package in menuconfig

v

Build your system with make

v

Re-extract the root filesystem tarball to /tmp/rootfs/

v

Reboot your system, and test the new foo application



In order to make our configuration usable by others, we'll create a
defconfig from it:

Now, users of your Buildroot can simply do:

To rebuild an identical environment from scratch.



We know want to store the kernel and root filesystem in the
NAND flash. To do this, we will:

1. Add a custom /etc/network/interfaces file to the
filesystem in order to not depend on the ip= kernel parameter

2. Configure Buildroot to generate an UBIFS/UBI image for the
root filesystem

3. Adjust the U-Boot configuration and kernel arguments to
boot from NAND flash.



1. Create the board/lsm/demo/rootfs-additions directory,
which will be an overlay of our filesystem

2. In our post-build.sh script, add:

3. Create the board/lsm/demo/rootfs-
additions/etc/network/interfaces file, with:



In menuconfig
1. Go in the Filesystem images menu
2. Enable ubifs root filesystem
3. Enable Embed into an UBI image

Then, rebuild with make, and copy output/images/rootfs.ubi
to /var/lib/tftpboot.



i

We will adjust the U-Boot environment variables.

» Kernel command line

» At boot time, load the kernel from NAND

» Helper script to flash the kernel in NAND

» Helper script to flash the rootfs in NAND



We will adjust the U-Boot environment variables.

» Helper script to flash the kernel and rootfs

» Reflash

» And reboot to test the system







Thanks for attending, have fun
with Buildroot!

Thomas Petazzoni

thomas.petazzoni@free-electrons.com

S|IdeS Under CC-BY-SA 30 PDF and sources will be available on

http://free-electrons.com/pub/conferences/2012/1sm/

Free Electrons. Kernel, drivers and embedded Linux devel Iting, training and support. http://free-electrons.com 43/43


http://free-electrons.com/pub/conferences/2012/lsm/

