
High-level yet policy free?

Configurable protocols and fixed policies in the Movitz platform

Frode Vatvedt Fjeld
Department of Computer Science

University of Tromsø, Norway

frodef@cs.uit.no

ABSTRACT
We identify three ways a programming platform can address
programming concerns: having application-configurable pro-
tocols by means of which applications can provide their own
policies, providing mechanisms with fixed policies, or by
doing nothing except ensuring that none of the platform’s
fixed policies unduly restricts application systems’ design
space. We believe awareness of these categories is impor-
tant when designing programming platforms, because im-
proper and unchangeable policies in a platform can severely
impact the quality of the final system. A platform with
support for higher-level programming constructs is more
likely to introduce more policy decisions in order to address
more programming concerns. Movitz is a platform for (x86)
hardware-near programming based on the high-level Com-
mon Lisp language, and whose design is heavily influenced
by the above observations. We describe some examples of
how Movitz tries to resolve the tension between support-
ing high-level programming while remaining policy-free by
identifying some programming concerns and motivating how
these are addressed in terms of the aforementioned cate-
gories.

1. INTRODUCTION
For the last few decades, the C programming language has
been a very successful technology for hardware-near pro-
gramming, ranging from tiny embedded systems to massive
OS kernels. In trying to understand the reason behind this
success, we attribute a substantial portion of it to the policy-
free nature of C. By this we mean that employing the C
programming language (or its close relatives, such as C++)
carries with it very few design-space restrictions relative to
the base-level design-space offered by assembly language.1

On the other hand, C also does not provide a lot in terms
of aiding and empowering the developer, again compared to
the base level as defined by assembly language programming.

1By assembly language we mean any language with an “ob-
vious” mapping to machine code.

Verbatim copying and distribution of this entire article are permitted world-
wide, without royalty, in any medium, provided this notice, and the copyright
notice, are preserved.
Libre Software Meeting July 5-9, 2005, Dijon, France.
Copyright 2005 Frode V. Fjeld

Except perhaps for the smallest embedded systems and the
simplest components of larger systems, programs written in
C require minute attention to the irrelevant. This makes it
a low-level language in the words of Alan Perlis [5], so we
find C’s nickname “portable assembly” to be of some merit.

What is the causality relationship between the two observa-
tions that C is low-level and policy free? It is not unreason-
able to think that the former is a necessary requirement for
the latter. This would imply that C would not have enjoyed
such success if it was not so low-level (and this is perhaps
even true, given the historical context of computer architec-
ture development). However, our hypothesis is that there is
no such causality. That is, while it may be easier to achieve
a policy-free platform if it is low-level, it should be possible
to retain the essential policy-free properties with careful de-
sign of a higher-level platform. Verifying this hypothesis is
one of the goals of the Movitz project.

The above discussion suffers under the vague nature of the
terms “policy-free” and “low-level”. Arguably, it is impossi-
ble by definition to provide a high-level and policy-free plat-
form, because removing irrelevant concerns from the view
of the programmer implies that some policy decision must
have been made. For example, C’s modulo integer arith-
metics can be considered a prime example of a mechanism
that requires attention to the irrelevant, but any platform
support for e.g. bignums must inevitably imply several pol-
icy decisions about data-structure layouts, memory alloca-
tion, etc. Furthermore, in some situations it is clearly not
irrelevant to be aware that, say, the CPU can perform 32-bit
modulo arithmetics a hundred times faster than the corre-
sponding arbitrary-length operations. Consequently, we see
our task as twofold: Firstly to identify which policy deci-
sions must be configurable, and which are mostly irrelevant
to programmers and can appropriately be embedded in the
platform. Secondly, to provide mechanisms to configure or
circumvent such policies, insofar possible.

Our approach is to establish a program execution model that
on the one hand is the basic infrastructure needed to sup-
port many high-level programming mechanisms, and on the
other hand establishes configurable protocols for program
execution. This protocol can be understood as a “switch-
board” between the lower-level execution model of the CPU
and our higher-level execution model, where some of the
wires can be rearranged while others are fixed. In imple-
mentational terms, Movitz is centered around the “run-time-



context” data-structure. This data-structure holds program
execution state, including the configuration parameters that
codify the particular policy decisions for that execution con-
text. The design of this data-structure and the associated
protocols is therefore the manifestation of our effort to iden-
tify and arrange programming concerns roughly into these
categories:

• Application-relevant concerns, for which the platform
provides infrastructure and policy configuration pro-
tocols (with reasonable defaults).

• Application-irrelevant concerns, for which the platform
provides mechanisms and fixed policies.

• Concerns that are irrelevant to the platform, for which
neither mechanisms nor policies are provided.

The first two categories partition the set of concerns that
must be addressed by the platform in order to be “high-
level”. The first and third categories comprise the concerns
for which Movitz remains “policy-free”.

After describing the Movitz platform from a birds-eye per-
spective in Section 2, we describe in Section 3 some pro-
gramming concerns of the categories we have just identified,
and how they are addressed by the Movitz platform.

2. TECHNICAL OVERVIEW OF MOVITZ
Movitz is based on the Common Lisp language [1], and em-
braces the associated paradigms such as dynamic typing and
incremental, interactive and exploratory development.

As we have already mentioned, Movitz is centered around a
data-structure called the “run-time-context” (RTC for short).
This data-structure can be understood as a software exten-
sion of the basic CPU state. For example, just as the CPU
state (i.e. registers) must be replicated for each thread or
process in the system, so too must the RTC. It contains the
entry-points to a number of low-level functions that address
application-relevant concerns, such as dynamic memory al-
location and dynamic variable binding. The RTC also holds
some state for these functions (because they are not lisp-level
functions, they cannot hold their own state as closures), as
well as other kinds of thread-local state such as space for
holding multiple-values.

A major challenge in designing configurable protocols for
some of the basic concerns of a programming platform, is
efficiency. For example, the concern of dynamic memory
allocation could be addressed by defining a single “malloc”
function signature (using the standard lisp-level infrastruc-
ture). Such a protocol would be configurable in that the
implementation of malloc could be changed. However, this
would be inefficient in several dimensions, and some of the
reasons for this are rooted in the fact that Movitz is a high-
level platform that needs to see the result of such a malloc
call as more that just a pointer to a block of memory. From
this perspective, the RTC is an optimized, special-purpose
data-structure and protocols that address these efficiency re-
quirements. To this end, the Movitz run-time maintains the
currently active RTC in a designated CPU register, allowing
it to be accessed efficiently.

The RTC can take on the role as a special kind of CLOS
object. That is, the RTC can be sub-classed and specialized
using the normal CLOS infrastructure. (In CLOS/MOP
terminology, there is a “run-time-context-class” meta-class,
and every RTC object is an instance of an instance of this
meta-class. [4]) In principle, every program execution proto-
col could be implemented in terms of the CLOS infrastruc-
ture. That is, the low-level functions mentioned in the pre-
vious paragraph, with generic functions and methods spe-
cializing on the (currently active) RTC. However, for many
concerns this would be prohibitively expensive, as we dis-
cussed in the previous paragraph.

The remainder of the Movitz run-time is a more-or-less stan-
dard Common Lisp implementation, much of which can be
considered to fall into the second category of concerns, namely
the application-irrelevant concerns for which mechanisms
with fixed policies are provided. For example, basic data-
structures such as cons-cells, strings, bignums, and function-
objects, basic protocols such as the function-call and pseudo-
atomic sequences, are the basic building blocks of our high-
level platform. Additionally, Movitz implements an increas-
ing portion of the standard CL operators, system function-
ality such as an interactive read-eval-print-loop, a debugger,
and library functionality and infrastructure for the OS ker-
nel application domain.

Movitz currently supports only a cross-compiling develop-
ment model, where code is edited and (incrementally) com-
piled on a standard Common Lisp system, from which bootable
kernel binaries can be dumped. Interpreted functions can be
dynamically added from inside Movitz, and compiled func-
tions can also be serialized and loaded into running kernels
(the compiler is not yet self-hosting).

3. EXAMPLES
In this section we describe four platform-level programming
concerns, and how these are addressed by Movitz.

3.1 Synchronization and atomic sequences
The issue of platform support for synchronization is a diffi-
cult design problem. For example, is it justifiable to make
access to basic data-types be thread-safe by introducing the
necessary synchronization, incurring synchronization over-
head also for single-threaded applications and other cases
when it is completely redundant? This has for example been
identified as a source of performance overhead with Java [2].
Inter-CPU synchronization is considerably more expensive
than intra-CPU synchronization, and which variant is re-
quired, or if platform-level synchronization is required at
all, is also not obvious. Under our previously introduced
terminology, our task is to identify the relevant kinds of syn-
chronization and place them in one of the three categories
application-relevant, application-irrelevant, or platform-irrelevant.

With notable exceptions, Movitz assumes synchronization
to be platform-irrelevant. That is, while Movitz provides
basic synchronization building blocks such as mutexes, op-
erations are not in general guaranteed to be thread-safe,
motivated by the principle of remaining policy-free. The
following paragraphs describe the exceptions to this design
choice.



One of the design goals of the Movitz run-time is that it
should be able to handle interrupts reasonably. That is, no
policy for interrupt handling—such as automatically defer-
ring them to some convenient time in the future—should be
embedded in Movitz: an interrupt triggers triggers imme-
diately a new stack-frame for the handler function.2 Being
a high-level platform, this design choice has certain impli-
cations for Movitz. Some of the application-relevant pro-
tocols, most notably those concerning dynamic memory al-
location, require nstruction sequences that would leave the
RTC or memory objects in inconsistent states if interrupted.
Movitz addresses this problem by defining a protocol for
“optimistic rollback atomic sequences”[3]. This protocol al-
lows a program to specify that if an interrupt occurs, it
should be resumed at a certain rollback point, which per-
haps performs some cleanup operation before restarting the
atomic sequence. We refer to this protocol as pseudo-atomic
sequences, because the atomic property is only guaranteed
within an RTC context.

The protocol for pseudo-atomic sequences is not configurable,
and is so placed in the application-irrelevant category. The
primary reason for this is that its current incarnation incurs
so little performance overhead that making it configurable
(i.e. by introducing an indirect low-level function call) would
increase its overhead dramatically. Since the primary mo-
tivation we see for making this protocol configurable would
be the ability to specify a no-op implementation for single-
threaded systems. Consequently, a configurable protocol
would be ultimately useless.

Pseudo-atomic sequences are implemented in Movitz by means
of a data slot in the RTC. Whenever the value of this slot is
non-zero an atomic sequence is in effect, and that value is a
designator for the rollback point to which an interrupt han-
dler must transfer control rather than the point at which the
interrupt occurred. The cost of both entering and leaving a
pseudo-atomic sequence is therefore one memory write. The
cost incurred if a pseudo-atomic sequence is interrupted is
bigger, but not prohibitive.

Besides pseudo-atomic sequences, Movitz might support (op-
tional) automatic synchronization for some data-types, such
as hash-tables, or define configurable protocols for same.
This aspect of Movitz is work-in-progress.

3.2 Dynamic memory allocation
Movitz defines a configurable protocol for dynamic memory
allocation, in order to accommodate a wide range of system
requirements with appropriate policies for storage allocation
and reclamation.

The design of a protocol for dynamic memory allocation
carries with it implications for how garbage collection can
work. For this reason, Movitz defines three categories of
data-types: those objects that cannot hold pointers3 (such
as strings, which require no scanning for live pointers during
GC), those objects that only hold pointers (such as cons-

2On which stack the handler frame appears is subject to
how the CPU (i.e. the x86 “interrupt descriptor table”) is
configured, and is another platform-irrelevant concern.
3By “pointer” here we mean a “lisp-val”, a 32-bit value sub-
ject to the dynamic typing regime.

cells, a memory block of which consists of only live pointers,
regardless of object boundaries), and finally those objects
that hold both pointers and non-pointers (such as function
objects, which require per-object parsing in order to find the
live pointers). Movitz provides a separate allocation proto-
col path for each of the three kinds of objects, which allows
an implementation to place the different kinds of objects in
separate memory blocks, thereby aiding the GC implemen-
tation.

Each of the three protocol paths is arranged in two steps,
which must be executed inside a pseudo-atomic sequence.
First a low-level function4 returns a pointer to an object
(which is not yet legal) of a given size, the contents of which
may now be initialized so as to form a legal object of the
desired type and contents. Then, a new low-level function is
called to commit the object allocation (with a size equal to
or smaller than the size first requested), before the pseudo-
atomic sequence is exited. The essential property of this
protocol is that it is O(1) relative to the object’s size. In
contrast, if the first call was to return a legal object, the
memory would have had to be initialized to GC-safe values,
resulting in O(N) behavior. Another benefit of the two-step
scheme, is that the object’s contents can be initialized before
its exact size is known. This is exploited e.g. in the imple-
mentation of bignum multiplication, where the object’s ini-
tialization phase is the actual multiplication operation, and
where the result’s exact size isn’t (easily) known beforehand.
This way, we avoid having to either allocate too much space
for the bignum result, or the overhead of using a separate
temporary buffer for the result which is copied into a fresh
bignum only after the computation is completed.

For certain frequently-used small objects, the constant fac-
tor hidden by the O(1) notation can be uncomfortably large.
Therefore, Movitz defines specialized allocation protocols
(i.e. low-level functions) for creating 32-bit bignums, and for
allocating cons-cells. The latter protocol can also be used
to allocate objects that are isomorphic to cons-cells, such as
standard CLOS instances (which consist of pointers to the
class and slot-vector, just as the cons-cell consists of the car
and cdr pointers).

There is only implicit support for garbage collection in Movitz.
There is no explicit protocol for GC as such. Rather, GC is
considered to be a part of the dynamic memory allocation
implementation. Typically, this is realized by having the
allocator function raising a CPU exception if a request for
memory cannot be satisfied. This exception is then handled
by running the GC to free up some space for the alloca-
tor. The pseudo-atomic mechanism will then ensure that
the allocation request is restarted. However, none of this is
specified or enforced by the Movitz run-time: the allocators
and garbage collector can cooperate in arbitrary ways.

3.3 Dynamic variable binding
The implementation strategy for dynamic variable binding
might be intuitively thought to be an intrinsic aspect of
the run-time system. Or, in the terminology we have intro-
duced: it could easily be considered an application-irrelevant

4I.e. a function whose calling conventions are not restricted
by the standard lisp function-call protocol, and whose entry-
point is immediately accessible from the RTC.



concern. Still, for Movitz we have classified dynamic bind-
ing strategy as an application-relevant concern, and pro-
vide a configurable protocol. This is motivated by the fact
that there are many different strategies for dynamic binding
with varying properties, and the solution spaces and intrin-
sic costs are very different for single-threaded, single-CPU,
and multi-CPU systems.

A dynamic variable binding is a dynamically scoped map-
ping from a variable name to a value. The naive “shal-
low binding” implementation strategy is to store the current
value in a global per-variable-name cell, and to push the pre-
vious value onto the stack upon entering a new scope for that
variable-name, and popping the old value back when leav-
ing the scope. Conversely, there is a naive “deep binding”
strategy where a new scope is entered by pushing an explicit
association between the name and value on the stack, such
that finding the variable’s current value entails searching the
stack for this association. Consequently, shallow binding ex-
hibits O(1) lookup but doesn’t work with multi-threading,
while deep binding yields O(N) lookup (with the number
of active bindings) but works even with multi-CPU thread-
ing. Between these two extremes, typically various forms
of (per-thread) caching is introduced to achieve optimal be-
havior for a particular system.

Movitz’ configurable protocol for dynamic variable binding
consists of five low-level functions in the RTC. Two of these
are called when a new dynamic variable scope is entered and
exited, two functions are for loading and storing a variable’s
current value, and the last function is used while unwinding
the stack due to e.g. dynamic control transfers. In terms
of this protocol, we have implemented both naive shallow
binding and naive deep binding in about 100 lines of code
(i.e. adorned inline assembly) for each, the latter of which is
Movitz’ default dynamic variable binding implementation.
Switching between the two strategies can be done dynami-
cally. The configurable protocol’s viability in terms of flex-
ibility and performance appears so far to be reasonable, al-
though extensive experience and benchmarks for serious ap-
plication systems are not yet available.

3.4 Threading
Threading is yet another programming concern that a plat-
form must determine for itself how to address. While the
current trend is to place threading more or less in the application-
irrelevant category (Java, C#, etc.) and provide fixed mech-
anisms and policies for threading, Movitz puts threading in
the platform-irrelevant category. That is not to say that
Movitz is not to support threading, but rather that thread-
ing comes in the form of optional library functionality, po-
tentially in numerous incarnations.

On the other hand, there is implicit support for threading in
Movitz, as we have also touched upon in the previous sec-
tions: Since interrupts can occur at any time, preemptive
scheduling can easily be implemented. Because the imple-
mentations of dynamic memory allocation is configurable, it
can be made thread-safe for most any threading scheme.
And ditto for dynamic binding. Currently, rudimentary
threading is implemented in a 200-line file of library code
for Movitz.

4. CONCLUSION
We believe it is very important in the design of a program-
ming platform to be aware of which concerns are to be ad-
dressed and how: with configurable protocols or fixed poli-
cies. Furthermore, for every fixed policy it is important to
identify how this policy restricts the design space for any
application system built on that platform. Movitz has been
designed with these principles in mind, and our experiences
so far indicate that it is possible this way to bridge the
gap between policy-free and high-level platforms in a fruit-
ful way.

5. REFERENCES
[1] ANSI X3.226:1994 programming language Common

Lisp, 1994. Also available in hypertext form at
www.lispworks.com/reference/HyperSpec/.

[2] David F. Bacon, Ravi Konuru, Chet Murthy, and
Mauricio Serrano. Thin locks: featherweight
synchronization for java. In PLDI ’98: Proceedings of
the ACM SIGPLAN 1998 conference on Programming
language design and implementation, pages 258–268,
New York, NY, USA, 1998. ACM Press.

[3] Brian N. Bershad, David D. Redell, and John R. Ellis.
Fast mutual exclusion for uniprocessors. In Proceedings
of the fifth international conference on Architectural
support for programming languages and operating
systems, pages 223–233. ACM Press, 1992.

[4] G. Kiczales, J. des Rivires, and D.G. Bobrow. The Art
of the Meta-Object Protocol. MIT Press, 1991.

[5] Alan J. Perlis. Epigrams in programming. SIGPLAN
Notices, 17(9), 1982.

http://www.lispworks.com/reference/HyperSpec/

	Introduction
	Technical overview of Movitz
	Examples
	Synchronization and atomic sequences
	Dynamic memory allocation
	Dynamic variable binding
	Threading

	Conclusion
	References 

