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ABSTRACT
A major concern of almost any operating system is the meth-
ods and mechanisms it uses to manage its resources. Physi-
cal memory and, in many cases, how it is mapped to virtual
memory is one resource that almost all aspects of an operat-
ing system and its applications require. Hence, the Memory
Manager (MM) and Virtual Memory Managers (VMM) play
a critical role in the systems performance.

Due to its critical nature, it is important to understand all
aspects of how the MM interacts with the operating system
and the different types of processes that run on the machine.
Our research strives to understand and define metrics mea-
suring the performance of a MM and implement meaningful
tools specifically for Linux.

This paper will start by introducing some of the performance
concerns of the MM and how they might be measured. At
each stage, we will introduce the research we are performing
to address the problems.

General Terms
Linux, Virtual Memory Management, Metrics

1. INTRODUCTION
Historically, the memory manager was a core subsystem but
not tightly integrated with other portions of the operating
system. In recent times, particularly in monolithic kernels,
the trend has been to tightly integrate the resource manage-
ment of IO and filesystems with the memory manager. The
integration is especially noticeable in Linux as portions of
the IO manager are almost indistinguishable from the mem-
ory manager.

This tighter integration implies that the overall performance
of the operating system is increasingly dependant on the
performance of the memory manager. Despite this, it is dif-
ficult to measure performance of just the memory manager.
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Benchmarks tend to measure a secondary effect and extrap-
olate the performance of the memory manager based on the
results. This makes it very difficult to determine what aspect
of a memory manager may be resulting in poor performance.
This paper will cover some aspects of the memory manager
that impact overall performance of the system and some of
the research we are conducting in the area.

The first subsystem examined in the memory manager is
the page allocator, discussed in Section 2. Page allocation
is a critical code path as almost all of an operating system
require physical memory. The most important criteria for
a page allocator is that it is fast[7] to avoid allocators be-
ing built upon the system allocator. The second important
criteria is its internal and external fragmentation is kept
low. Internal fragmentation is where more memory than
necessary is allocated to satisfy a request wasting memory.
External fragmentation is where enough memory is free to
satisfy a request, but it is split into two or more chunks.
Linux uses two standard allocators. The first is a binary
buddy allocator for the allocation of pages and the second
is a slab allocator for the allocation of small objects.

Section 3 examines how information is copied between user-
space and kernel-space. All interaction with the kernel will
involve copying data to and from userspace so how the OS
handles this is important. On the x86, Linux uses the upper
1GiB of address space for every process table so that the
kernel tables are effectively global in nature. This allows the
kernel to easily copy data to and from the current process.
However, there are other problems with copying to/from
other processes or interacting with physical memory over
the 1GiB mark.

The process address space and how it is managed will be
discussed in Section 4. Modern Linux applications, particu-
larly GUI applications depend on large number of mappings
and tracking these effectively is important. For example,
gnome-panel 2.6.2 requires 175 mappings involving 74
separate libraries. Effectively managing this large number
of mappings has important performance considerations.

A popular consideration, although sometimes over-emphasised,
is the page replacement policy discussed in Section 5. An
OS that frequently replaces the wrong page will suffer seri-
ous slowdowns so it is important that the correct decisions
be made. A related topic is how effectively the OS manages
its backing storage.



Figure 1: Binary Buddy Allocator in Linux

2. ALLOCATORS
Linux uses a binary buddy allocator with some minor alter-
ations. The most important alternation is the use of a per-
cpu cache for order-0 (i.e. 20 or 1 page) allocations to avoid
locking on multi-processor machines. This arrangement is
shown in Figure 1. The aspects of the page allocator that
concern performance are as follows;

Raw performance Linux chooses the binary buddy alloca-
tor because it has superior time performance[6]. As a result,
Linux has very few specialised allocators and they usually
exist for emergency pools rather than for avoiding the time
overhead of the allocator. Measuring the raw performance
of the allocator is achieved by using the Aim9 Benchmark,
paying particular attention to page test and brk test.

Page coloring Page coloring is a technique that makes sure
that physical pages that shared cache lines do not use adja-
cent areas in virtual memory. As program usually reference
memory in localised patterns, it is desirable they do not
have poor cache performance between adjacent virtual ad-
dresses. This intuitively makes sense, but it is very difficult
to measure the effect of adjacent virtual pages having the
same “colour”. Hence, does not use page coloring in the
binary buddy allocator because no benchmark has been de-
vised that show a performance gain for a given workload
but the additional complexity to the allocator is noticeable.
Coloring is provided within the slab allocator where it can
be trivially provided, even though the performance gain is
very difficult to measure.

Fragmentation The third metric to use for allocators is its
fragmentation properties. The standard binary buddy allo-
cator suffers badly from external fragmentation[9] meaning
that subsystems in Linux are carefully written to not require
large blocks of physically contiguous memory. Ordinarily,
the binary buddy allocator also suffers badly from internal
fragmentation but this is heavily mitigated in Linux using
the Slab Allocator[2][3].

2.1 Allocators and Metrics

Raw Performance It is relatively simple to measure the
raw performance of the allocator using the Aim9 benchmark
(http://sourceforge.net/projects/aimbench). The Aim9 bench-
mark runs a number of tests on a wide variety of operating
system functions but the ones most important for the per-
formance of the page allocator are listed in Table 2.

Test Description
page test System Allocations AND Pages/second
brk test System Memory Allocations/second
exec test Program Loads/second
fork test Task Creations/second

Figure 2: Aim9 tests reflecting the page allocator

page test is the best indicator of raw performance. To help
run the test and compare results, two utilities come with
VMRegress (http://www.csn.ul.ie/∼mel/projects/vmregress)
called bench-aim9.sh and diff-aim9.sh. bench-aim9.sh
runs the AIM9 benchmark non-interactively, stops it after a
test specified on the command line and stores the result in
a directory based on the kernel version and a user-specified
string. A sample report is shown in Figure 3. diff-aim9.sh
will take two sets of Aim9 results, print the results from each,
the difference between them and the percentage differences.
A simple report is shown in Figure 4.

Fragmentation There is no single metric for measuring
fragmentation all involve some function of free space, the
size of free blocks and in some cases, what has already been
allocated[5]. The equation we use to measure external frag-
mentation in Linux is;

Fextfrag =
TotalFree−Pi=n

i=j 2iki

TotalFree

Where 2n is the largest allocation that can be satisfied, j is
the order of the desired allocation and ki is the number of
free page blocks of size 2i. This yields a number between
0 and 1 where 0 indicates there is no fragmentation for an
allocation of 2j and 1 means the allocation cannot be satis-
fied. Expressing this as a percentage of fragmentation is a
case of multiplying the result by 100.

This necessary information is collected from /proc/buddyinfo

by the utility extfrag stat.pl provided by VMRegress. A
sample report is shown in Figure 6 that expressed fragmen-
tation in terms of percentage.

Linux has no mechanism for showing what the distribution
of pages throughout the address space based on either the
age of the allocation or its type. The ideal would be that all
allocations are grouped together by age but the required
accounting makes it impractical. The closets alternative
is to group allocations together by type. To measure the
distribution of pages by type, patches and tools are pro-
vided by VMRegress. Once the patches are applied, the
tool mapfrag stat.pl is able to generate a web page show-
ing the distribution of page types in each zone.

We implemented a patch that arranged pages into the types
Kernel Unreclaimable, Kernel Reclaimable and User Re-



------------------------------------------------------------------------------------------------------------
Test Test Elapsed Iteration Iteration Operation

Number Name Time (sec) Count Rate (loops/sec) Rate (ops/sec)
------------------------------------------------------------------------------------------------------------

1 creat-clo 60.05 1116 18.58451 18584.51 File Creations and Closes/second
2 page_test 60.01 4414 73.55441 125042.49 System Allocations & Pages/second
3 brk_test 60.04 1608 26.78215 455296.47 System Memory Allocations/second
4 jmp_test 60.00 250917 4181.95000 4181950.00 Non-local gotos/second
5 signal_test 60.01 5448 90.78487 90784.87 Signal Traps/second
6 exec_test 60.03 781 13.01016 65.05 Program Loads/second
7 fork_test 60.05 928 15.45379 1545.38 Task Creations/second
8 link_test 60.01 6102 101.68305 6406.03 Link/Unlink Pairs/second

Figure 3: AIM9 Report

1 creat-clo 18483.33 18584.51 101.18 0.55% File Creations and Closes/second
2 page_test 121926.35 125042.49 3116.14 2.56% System Allocations & Pages/second
3 brk_test 441779.11 455296.47 13517.36 3.06% System Memory Allocations/second
4 jmp_test 4184216.67 4181950.00 -2266.67 -0.05% Non-local gotos/second
5 signal_test 92051.32 90784.87 -1266.45 -1.38% Signal Traps/second
6 exec_test 64.87 65.05 0.18 0.28% Program Loads/second
7 fork_test 1544.49 1545.38 0.89 0.06% Task Creations/second
8 link_test 6345.14 6406.03 60.89 0.96% Link/Unlink Pairs/second

Figure 4: AIM9 Difference Report

claimable so that pages that were easily discarded could be
grouped together. With this mechanism, it is possible to al-
locate large blocks of physically contiguous memory by just
reclaiming the User-Reclaimable pages.

Figure 5 shows the difference in distribution of page types in
the Normal Zone with the standard allocator and an alloca-
tor designed to reduce fragmentation. The map was gener-
ated after a light run of a kernel-compile-based benchmark
called bench-stresshighalloc.sh. It is interesting to note
that KernelReclaimable pages (value of 2 on the y axis) is
barely noticeable in the modified allocator as they are con-
fined to a small portion of the map but scattered throughout
the address space in the standard allocator. Under heavy
pressure, the modified allocator was able to allocate 63 4MiB
pages in comparison to 3 4MiB pages returned by the stan-
dard allocator.

3. USER-KERNEL COPYING
Up to one third of kernel time is spent copying between user
and kernel space[7] making it a critical operation for the
kernel and it is the reason why optimizations like zero-copy
exist. There are two traditional ways of copying the data.
The first is to use a portion of the each processes address
space to map a single view of the kernel address space. This
gives the illusion that the kernel space is global in nature and
always available. In this configuration, copying is simply a
case of reading the userspace portions of the address space
either in single bytes or using block-copy operations. The
second option is to map the kernel is its own private address
space. Information is then copied between the user and
kernel spaces using special instructions.

The advantage with sharing the address space is that it is
fast and relatively simple to implement. The operations
required to copy between address spaces are only half as
fast as copying within the same address space on some ar-

chitectures. Additionally, many architectures will flush the
Translation Lookaside Buffer (TLB) when changing address
spaces which is a significant penalty for processes that in-
teract heavily with the kernel.

The major disadvantage of sharing the address space is that
the entire process address space is not available for use. This
means that there is a limit to how much memory may be
mapped by a process at a given time. This limit is signif-
icantly lower than the addressing capabilities of the hard-
ware. To compound the problem, kernel operations are not
able to use all the addressable physical memory and must
temporarily map the higher physical addresses into the vir-
tual address space.

Linux provides both usage models for address-space copying.
Most architectures share the address space with the split
location being architecture dependant. For example, by de-
fault the x86 uses the lower 3GiB for the userspace portion
and the upper 1GiB for the kernel. The option is provided
on the x86 to use a private address space for the kernel with
the resulting performance penalties for users that are heav-
ily CPU bound and are required to map the full address
space.

It is interesting to note that some architectures like the
Sparc64 have hardware support for keeping the kernel in
a separate address space without significant performance
penalties. Linux does not currently take advantage of this.

3.1 Metrics measuring User-Kernel Copying
Currently, there are no metrics that specifically measure the
cost of user-kernel copying. They are indirectly measured by
counting how many system calls be be made in a second or
how many network operations may be performed. Specifi-
cally, web-benchmarks have a heavy dependency on the ker-
nels ability to quickly copy data between different types of
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Zone (% Fragmentation Orders 2^0 -> 2^MAX_ORDER)
DMA 0.000 4.331 6.299 7.087 14.961 18.110 24.409 24.409 49.606 100.000 100.000
Normal 0.000 37.260 37.534 37.534 38.630 38.630 38.630 47.397 64.932 100.000 100.000

Figure 6: External fragmentation report

buffers. A targeted metric that did measure the speed of
copying would need to measure the following;

• Number of single bytes copied per second (integer pa-
rameters)

• Number of pages copied per second (buffers)

• Time taken to fault a user page (read/write on a paged-
out page)

• Time taken to setup a zero-copy buffer (networking)

4. PROCESS ADDRESS SPACE
On the x86, 3GiB is available for a process to address by de-
fault. As the majority of applications do not use the whole
address space, the OS is responsible for tracking what re-
gions are in use and for what purpose. Linux uses a number
of structures to track what the portions are being used for.

The first is the task struct of which there are one for every
process, thread and kernel thread running in the system. All
the tasks in a system are linked together on a doubly linked
list that is rarely searched. All tasks except kernel threads
will have an associated mm struct where threads within a
process share the same mm struct.

Each region in the address space is tracked by a vm area struct

(commonly abbreviated to VMA). The search complexity of
the data structure tracking this is performance critical as a
wide variety of address space related operations depend on
finding the correct vm area struct, or on some cases, the
correct sized hole quickly. To address the requirement to
find both VMAs and holes quickly, the VMAs are arranged
on both a doubly linked list (O(n) search complexity) and a

red-black tree(O(log(n)) search complexity, both sorted by
address.

To further speed the search times of VMAs, a pointer to
the last found VMA is stored in mm struct→mmap cache.
To help search for holes, the address of a known large hole
is stored in mm struct→free area cache. An interesting
property of free area cache is that it fragments the address
space badly although it is not an issue that affects many
types of process.

A more interesting problem in the area of process address
space management is the use of variable sized pages. Many
architectures support more than on page size, including the
x86. By default, Linux uses the largest possible pages for the
kernel image and a small fixed size page for almost every-
thing else, the exception being files backed by the HugeTLB
Filesystem. This can punish applications that use a large
portion of their address space such as Java Virtual Machines
and Database servers.

The punishment is because of inefficient TLB usage. When
a memory reference is made, page tables are searched for
the physical page backing the virtual address. The result of
this search is cached in a TLB but it is of limited size. A
sparse user of the address space will flush the TLB frequently
which is a surprisingly penalty, about 900 clock cycles on an
Pentium III Xeon. According to the specifications[4], this
machine has 128 entries and 64 entries for 4KiB pages in the
ICache and DCache respectively. For large pages, it shares
the entries in the ICache but each of the 64 entries in the
DCache may be used fro either 4KiB pages or 4MiB pages.
This means that the 64 entries may be used to store the
physical addresses of either 256KiB of data or 256MiB of
data in the TLB. For applications using large amounts of



data, this could be a significant saving.

Given such significant differences in how much memory may
be addressed by the TLB, Linux has surprisingly poor sup-
port for variable sized pages due to a combination of histor-
ical reasons. One, many parts of the kernel make assump-
tions on the size of the page and introducing variable sized
pages would break these assumptions. Second, at run-time,
large pages are rarely available due to external fragmenta-
tion in the page allocator. Despite this problems, an im-
portant aim of our research is to measure the performance
penalty from inefficient TLB usage and see what may be
done to address it.

4.1 Metrics for the Process Address Space
Again, a specific metric does not exist. In the past, small
benchmarks that called mmap() and munmap() were used for
different sized regions to determine how fast the appropriate
areas could be found. Indirectly, any benchmark that mea-
sured the time taken to page fault on a process with many
memory-mapped regions would indirectly measure the abil-
ity of the operating system to find regions.

5. PAGE REPLACEMENT
Page replacement is one area that has received a lot of at-
tention, both in research academically and within the Linux
community. In any demand-paged system, the requirement
will exist to select pages for removal from the system or
saving to backing storage. Due to the very slow relative
speeds of disk accesses, removal is an expensive operation,
only matched by the expense of reading the data back in.
Hence, the performance of a system that needs to page fre-
quently is heavily dependant on the correct selections from
the page replacement policy.

Linux uses a page-replacement policy that defies a specific
categorisation. It is called an LRU policy but it is really an
LRU-approximation using a combination of WSClock and
LRU-2Q. Some heuristics are in place to mitigate pollution
of the lists due to processes that scan their address space
such as media streaming applications. To avoid some of the
traditional locking problems associated with LRU, Linux has
a set of lists for each zone in the system, each set protected
by its own lock.

The page replacement policy is heavily tuned in Linux but
there are no tools for measuring the effectiveness of the re-
placement policy, partially because of its complexity and
partially due to the lack of a suitable benchmark. Hence,
reports tend to be the subjective experience of the end-user,
not a reliable metric.

For decades, LRU and LRU approximations were the best
replacement policy to use as, in some circumstances, they
are the optimal replacement policy for workloads that ex-
hibit high locality of reference. Modern applications are
showing a much weaker locality of reference, especially with
increase in applications based on Java Virtual Machines and
a number of media applications. Alternative replacement
policies such as ARC[8] and CAR[1] but there is no solid
plan in place for the implementation of such policies.

5.1 Metrics and Page Replacement

This area is very difficult to measure the effectiveness for.
Traditionally, analysis of page replacement algorithms have
been through competitive analysis on the mathematical be-
havior of the algorithm and through simulations. Collection
the necessary data on a live system is very difficult and
reproducing the test scenario each time is even harder. Fre-
quently on Linux, benchmarks, such as the Andrew Morton
Wiggle Test, have used the subjective experience of the user
to measure how much the system appears to “lock up” un-
der memory pressure. Indirectly, other benchmarks such as
ConTEST (http://members.optusnet.com.au/ckolivas/contest/ )
measure the page replacement policy by timing how long it
takes to finish each part of the test. However, in that case,
the number of variables affecting the final result are consid-
erable.

Our research goal will be to develop a tool that measures
the replacement policy used by Linux in comparison with
Belady’s MIN optimal offline algorithm. We intend to mea-
sure statistics such as cache misses and page fault rates for
arbitrary workloads. To measure the effectiveness of the
replacement decisions, we intend to build a number of spe-
cific workload types, run them standalone on the system
and then force the replacement policy to remove the pages.
While the pages are being removed, for known workloads,
we will be able to determine if the correct pages were chosen
in the correct order within a reasonable confidence.

6. CONCLUSIONS
In this paper, we have listed some of the aspects of the
VM that have important performance considerations for the
whole system. We discussed how they are implemented in
Linux and what our research goals in these areas are.

The intention over the next three years is to develop specific
metrics that may be used on each part of the VM and apply
those to Linux. We hope to introduce some support for
variable sized pages within the operating system and use
our metrics to show the performance gain or loss due to
such a change.
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